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*‘\j Broad Range of Mission
- Requirements & Concepts




Unconventional Design

Configuration

Flow Conditions

»Broad range of vehicle size ¥ Incompressible to transonic
» Sensor-suite dictated »>104<Re<10°
»High-aspect-ratio wings » Laminar-transitional flows
»High-aspect-ratio swept wings » High-altitude _

> Joined wings » Low drag aerodynamics

# Delta wing platforms
-Moderate sweep (A > 60°)

-Low sweep (A < 60°) Extreme Flight Conditions




\ J Viscous Flow Simulation for
\qr/ Air Vehicles

Modeling Hierarchy

Reynolds Averaged
Navier-Stokes Eqs. (RANS)
- Full aircraft simulation

- Tor 2-equation models

- 2nd-order algorithms

Large-Eddy Simulation (LES)

- Component flow analysis

- Spatio-temporal turbulent
large-scale structure

- Sub-grid scale models

>

Direct Numerical Simulation (DNS)
-Transitional flows
- Flow control cevices
- Micro Air Vehicles (MAV's)
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"“ /’ Prediction of Low-Re Airfoil
Y Flows

Experiment Computation
.r'}
Mueller et al, Re=47 000, c.=5° ..-;-D

Re=10x10% c=5°
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Base flow prediction:
Boundary layer
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\‘;,4 Compressibility and 3-D Effects

Shock / B.L. Interactions Complex '?'D Separation

Layhack Angle = Fresentulion Linit

Peake & Tobak

Juncture flows




"‘\j Issues for the Accurate Prediction of Low-Re 9
gy High-AR Wing Sections

# Separation and transition must be captured accurately
# High-resolution unsteady tools required
» RANS Jow-order procedures not suitable for transitional flows

> Cmu |Iﬂ%1 of transition with_body motion _
(Implications for aeroelasticity and vehicle dynamics)

# Crossflow instability for swept wings

# Effect of gusts, crosswinds and aircraft dynamics
# Hysteresis effects

# Complex 3-D separation and juncture flows

# Transonic shock b/l interactions

# Surface heating effects on low-Re aerodynamics



Delta Wing Platforms

Flow Challenges

¥ Leading—edge vortex formation

# Feeding sheet structure

# Vortex wandering

# Vortex core dynamics

# Vortex asymmetries

¥ Interaction of multiple vortices

# Vortex breakdown & stall

¥ Hysteresis effects

# Dynamic motion effects

# Multiple time scales

¥ Reynolds number effects

# Unsteady loading (buffeting)

# Effect of wing platform leading and
trailing edge shaping

# Shear-layer and boundary layer
transition

)i Flow structure for moderate sweep




Shear Layer Structure on Delta Wings

A=75° Re =50,000, 0 =25°

vortex core P

What is the origin of vortical sub-structures? X o0
-Experimental disturbances
-Interaction of S/L with secondary flow,
trailing-edge separation and breakdown
-Shear-layer instability modes

-Steady vs unsteady substructures Laminar separation of
surface boundary layer

What is the relation of the surface flow
pattern to the S/L transition process?




Moderate-Re Flows on Delta Wings:
Evolution of Shear Layer

A=750° qa=250°

Re= 104

Increasing R>

Complex flow field evolution in transitional regime




Instantaneous and Mean Representations of
Transitional Shear Layer

A=75° Re=100,000, a0 =25°

Instantaneous

Are steady & unsteady sub-structures distinct phenomena or simply different
representations of transitional/turbulent shear-layer dynamics ?
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\J Physics of Vortex Breakdown g
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isosurface of Experiment Computation
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‘\ J Delta Wing Flow Structure
oy for Moderate Sweep Angles

inslanianeous -
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Dual Vortex
Structure

A=500 ¢ =100, Re= 20,000 a=10°




Pt

Physical Mechanisms:

- spiral instability

- fin leading-edge separation

- breakdown fluctuations

-vortex distortion & splitting

-Feedback between breakdown and
fin separation region
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\‘*J Some Key Issues
>

# Need to reinvigorate vortex flow research with emphasis on UAV applications

# Unconventional flight conditions/configurations demand combined
experimental / numerical approaches

# Flows are inherently unsteady, possibly transitional and always three-dimensional

# High-fidelity unsteady numerical tools suitable for the nearly-incompressible to
the transonic regimes are required

# Simulation of coupled phenomena is essential, /.e. fluid-structure interactions, flow
control and vehicles dynamics

# High-ficelity tools needed to guide more affordable design approaches



